Fourier transform over semi-simple algebras and harmonic analysis for probabilistic algorithms
نویسندگان
چکیده
However, these powers are often hard to calculate in a nice closed form. For this reason we shall consider their Fourier transforms in some suitable context. The idea being that intricate computation of products in the group algebra are replaced by simple point wise products. More precisely, we shall derive new extended versions of a formula of Garsia (see (1) below) and of similar formulas obtained in [4], as well as generalizations of those. These formulas can be considered to give, in explicit form, a Fourier transform such as defined below. Let A be a semisimple algebra, and let B = v1, v2, . . . , vn be some fixed (linear) basis for the subalgebra B, of A, spanned by the complete set of primitive idempotents e1, e2, . . . , en of A. Recall that these idempotents are such that
منابع مشابه
Dynamic Harmonic Analysis of Long Term over Voltages Based on Time Varying Fourier series in Extended Harmonic Domain
Harmonics have become an important issue in modern power systems. The widespread penetration of non-linear loads to emerging power systems has turned power quality analysis into an important operation issue under both steady state and transient conditions. This paper employs an Extended Harmonic Domain (EHD) based framework for dynamic analysis of long term analysis over voltages during the tra...
متن کاملMellin Transforms: Harmonic Sums
My assignment is going to introduce the Mellin transform and its application on harmonic sums [1]. Hjalmar Mellin(1854-1933, [2] for a summary of his works) gave his name to the Mellin transform, a close relative of the integral transforms of Laplace and Fourier. Mellin transform is useful to the asymptotic analysis of a large class of sums that arise in combinatorial mathematics, discrete prob...
متن کاملA tensor product approach to the abstract partial fourier transforms over semi-direct product groups
In this article, by using a partial on locally compact semi-direct product groups, we present a compatible extension of the Fourier transform. As a consequence, we extend the fundamental theorems of Abelian Fourier transform to non-Abelian case.
متن کاملA New Exact Inversion Method for Exponential Radon Transform Using the Harmonic Analysis of the Euclidean Motion Group
This paper presents a new method for the exponential Radon transform inversion based on the harmonic analysis of the Euclidean motion group of the plane. The proposed inversion method is based on the observation that the exponential Radon transform can be modified to obtain a new transform, defined as the modified exponential Radon transform, that can be expressed as a convolution on the Euclid...
متن کاملAbstract structure of partial function $*$-algebras over semi-direct product of locally compact groups
This article presents a unified approach to the abstract notions of partial convolution and involution in $L^p$-function spaces over semi-direct product of locally compact groups. Let $H$ and $K$ be locally compact groups and $tau:Hto Aut(K)$ be a continuous homomorphism. Let $G_tau=Hltimes_tau K$ be the semi-direct product of $H$ and $K$ with respect to $tau$. We define left and right $tau$-c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Discrete Mathematics
دوره 139 شماره
صفحات -
تاریخ انتشار 1995